如何判断
绝对值编码器的真假?
目前市场上商家宣称的“绝对值多圈编码器”,其实有多种内部原理,其中有两种事实上并不是完整的全行程绝对值编码。需要了解它们使用的局限性,在哪些场合是不可以使用的。
公众号 《智造商》麦总发了一篇文章《几种不同类型的绝对值编码器》,我在文后留言了,该文中介绍的有两种不是“绝对值编码器”,一种是有计数器+电池记忆的,另一种是有计数器+韦根脉冲微能量记忆的,这两种编码器出厂时内部的绝对值编码并不完整,其编码仅仅是单圈绝对值编码,而多圈是依赖用户使用后计数器对圈数累加,而获得更多的增量圈数位置编码,并记忆保存的,那显然是增量式原理了。
严肃讲这种内部有计数器+记忆的方式,是“伪绝对多圈编码器”技术,我们也称之为“电子多圈”技术。这个问题在市场上还有很多争议,卖这些电子多圈编码器的很多都是进口品牌,与全行程真绝对值编码的多圈绝对值编码器比较,在标识上几乎没有区别,混在一起销售了,很多用户由于对进口品牌的信任,而并不清楚其中的在多圈编码上是否绝对值编码的“真”“伪”,而它们因其内部原理的不同,使用的场合也是不相同,如果用户不清楚而不当使用,将会造成不必要的损失。另外,电子多圈编码器相较于齿轮箱真绝对值多圈编码器的成本更低,如果不加以区分不给用户有知情权,混在一起销售,那是一种不公平的不正当竞争。
另一方面,由于电子多圈计数器加记忆型的编码器,相较于机械齿轮箱式的真绝对值多圈编码器而言,少了齿轮箱传感器组,成本低,体积小,作为小型伺服电机上的编码器应用,仍然还是受到了不少用户的认可,尤其是在小型日系伺服电机几乎都是这种电子多圈编码器。一年来不断有网友也想了解这两种技术,或者开发这两类电子多圈产品,来问我这两种编码器的原理与它们之间的比较,哪个会好一点?在今年上海电子展上和上海工博会上,也有芯片模块厂家和编码器生产厂家都同时展示了这两种不同方式的电子多圈编码器,我也跟参展的厂家作了一些交流。大家也都在议论,电池记忆的与韦根脉冲微能量记忆的,究竟哪个稍好一点呢?
绝对值编码的定义与意义
1.完整的全行程预先编码的唯一性
编码器内部编码已预先有大数据编码,在整个规定的测量行程中,每一个位置是唯一性的编码,在使用后不会再产生新的编码。
2.与历史无关
与时间轴无关,无需计数过程,任何时间读取或者不读取都可以根据数据下游指令,可直接一次输出与时间轴无关的编码大数据。
3.最大的容错性
无计数过程,无记忆与再读取过程,也就是意味着无需考虑计数起始点、停电、以及停电后是否再有移动,也无需担忧在任何时候的干扰,干扰后是否还能恢复到真实的编码角度信息输出——所有的编码预先编好了,不会再产生新的编码,只与编码器转轴运动位置有关(与是否断电无关),外部的干扰也无法改变原始编码值。
计数器的电子多圈编码器技术
1.一种单圈绝对值编码,多圈增量计数。在360度范围内是绝对值的,超过360度后回零,并以计数器的增减来增加多圈编码器的编码。也就是多圈数据原始编码没有,而是从寄存器里调取并在使用时通过`计数器获得新的编码。
2.以时钟表盘举例,这种电子多圈编码器只有一根表针,当经过12点后就回零,在经过12时,数值一下子从最大到最小,电子计数器根据前后两次读取的数值比较(历史关系比较),由大突变为小(下降沿),逻辑判断圈数增加了1;数值的由小突变为大(上升沿),逻辑判断圈数减少了1。计数器寄存。
3.由于我们已经清楚,本文题目上这两种伪绝对值多圈属于“电子多圈”计数器性质,不符合上面的第1与第2条,因而不能称为“绝对值编码”,我把它们称为“伪绝对值”。
下面我们对这两种电子多圈技术的比较,重点将是在”容错性” 上的比较。
电池记忆电子多圈绝对值编码器技术的原理及容错性
在《您买了假绝对值编码器吗?您的知情权被忽视了吗?——扒一扒伪绝对编码器》一文中,我已有对电池记忆原理的电子多圈有表述。可回头点击读取该文。
这里重点讲讲零点分界线、电池记忆技术的电源低功耗管理与电池能量计算。
1.读数的可靠性问题
电池记忆多圈技术主要是光学单圈绝对值码盘,通过两次先后的读取,判断是否过零点分界线。这里光学码盘的零点刻线是稳定的,分界线清晰的,关键是在过零点分界线前的最后一次读数的可靠性,和过零点分界线后的第一次读数的可靠性,依赖于这两次读数的逻辑关系,而判断多圈的圈数是增还是减,或者不变。零点分界线的稳定清晰,两次读取的读数准确性,成了这种计数器容错性的最大考量。当突然断电时或者有较大的干扰时,编码器的位置正好在零点位置及附近时,两次读数比较会产生反向抖动,这个问题就会比较突出。
2.能量管理问题
断电后,单圈光学码盘的读取可靠,需要有稳定的电池电源给光源供电,给感应传感器供电,而长时间的断电待机状态下,备用电池的电能很快就会耗尽。因此,这种技术需要有低功耗电源分配管理技术,既要保证光源与传感器的供电稳定,又要保持电池能量节约以维持长时间待机,往往采取一种间隙式供电策略。供电时间占空比、供电启动与暂停所带来的电源波动对光源与传感器读取的影响,供电工作占空比与待机时间的权衡,外部电源供电与内部电池供电的切换时对光源与传感器读取的影响,等等。例如突然的断电,或者开机通电时的电源管理,是否会因供电的抖动,在零点分界线附近的读数反向抖动,易造成过零点分界线的计圈判断的失败。
3.对电池能量的计算
对长时间待机或者电池寿命将尽时,对电池能量需作计算判断,以报警提示需要更换电池,以及因供电能量的不足而可能读取并计圈的失败。
4.电池本身的问题
在编码器内部的电池因容量较小,待机时间有限。而引线到外部的电池,容量虽然大了,但是引线接插件等故障可能性增加,对于抗振动环境有影响。电池的温度范围——不可逆性失效与可逆性供电不稳定。从目前的资料看,储存与工作温度不得大于100℃(不可逆失效),可逆性高低温参数(供电不稳定)没有看到资料描述。
从大部分电池低温性能较差判断,不适于户外场合。尤其是,不适于较长断电待机且户外(无空调)的场合,例如水闸开度、起重与港口机械、工程机械、风电与太阳能(户外场合)等等,应该避免使用。
日系编码器厂家确实也说明了,这类编码器适用于小型伺服电机、小型机械手臂和机器人。而没有指明可在较大型设备上以及有高低移动下沉、有位能变化的位置闭环场合下适用。
韦根脉冲微能量记忆多圈技术的原理及容错性
韦根脉冲微能量记忆的原理,在《您买了假绝对值编码器吗?您的知情权被忽视了吗?——扒一扒伪绝对编码器》(点击读取)一文中也有表述,这里不再啰嗦。
重点讲讲磁电式编码器的零点位置模糊性,韦根自发电能量大小的不确定性,韦根微能量储量的不确定性。
1.磁场零点不确定性:磁电式单圈绝对值编码器与光学编码器比,磁场零点位置分界线是模糊的,而且更糟糕的是还不稳定。例如编码器内部及印制板上的电气元器件的磁化、退磁,灰尘金属屑的对空间电磁场分布的扰动,外部电磁场的扰动等,在通电状态下,可以有四个正交的磁电感应器做差分共模干扰消除,但是在断电状态下,仅依赖于2个韦根感应器对过零点的感应判断,一旦停在磁场零点附近,磁场反向扰动时过零点计圈的逻辑判断在低功耗状态下的准确性令人生疑。
2.韦根自发电电流及能量的不确定性:根据能量守恒定律,停电后韦根丝发电的能量来之于编码器转轴的动能,停电后转轴速度动能是未知的,并不确定的,长时间待机后计数器能量是仅仅就靠韦根自发电,还是依赖于前面存储的能量,如果是存储的能量能待机维持多久?这种断电后的自发电电流与能量储备是不确定的,韦根厂家没有给答案。
3.断电后在磁场零点附近的轻微抖动,动能极为有限,每次抖动因此转换的韦根微发电能量究竟是否能够正好达到计数器工作?如果依赖存储能量在长期停电待机后,能够保持维持多久?
4.与电池供电不同,韦根微能量是否能足够保证正确计数,以及计数器如果有错如何判断、检出并报警?在这一点上韦根做得还不如电池,如果已经是错误的数据了,使用者却无法知道这是错误数据,而且因为宣传上它是“没有电池的,绝对值的”,用户出于对绝对值编码器的信任,会继续使用错误的数据,而有可能造成事故发生概率。对这样的问题,韦根编码器厂家以模糊的“专利技术”搪塞,而从未做正面回答。韦根专利技术的哪些受保护内容、保护期限、哪些已是公开技术无需专利,均未在资料上见到。
5.新的据称EMC已经成熟的韦根编码器入市时间较短,数量累计还不够多,问题虽已有少量暴露,但还没有引起足够的警惕性。据市场未经证实的反馈意见,韦根多圈编码器在交货时,中国市场上因进口编码器出厂经运输及中间环节,以及中国市场很多项目周期长,中间的断电待机时间较长,大约有不到1%左右的数量编码器在使用时已发现有计圈错误,而需更换。
由于有较多的未知不确定性,不建议韦根电子多圈编码器用在对于可靠性要求高的场合,需要评估因数据失败去现场检查并更换编码器,所带来的损失有多大。
尤其是,不适于较长断电待机且户外(无空调)的场合,例如水闸开度、起重与港口机械、工程机械、风电与太阳能(户外场合)等等,应该避免使用。
令人担忧的是,由于韦根电子多圈编码器没有电池,在中国市场上宣传的含糊性,常常与机械齿轮箱式的真绝对值多圈编码器混在了一起销售,而难以区分。有的商家在绝对值多圈编码器上竟然有三种可能性难以向用户明示区分:光学式的齿轮箱多圈绝对值编码器(温度范围85度)、光学式的齿轮箱多圈编码器(温度范围70度,相当于二等品,在户外无空调环境下不可用)、磁电式的韦根电子多圈编码器(在有上下位能变化场合下不可用),这三种同时有在销售,用户在采购时是否清楚究竟买的是哪一种?是否在自己使用的场合适用。
了解更多
编码器相关知识,敬请关注西安德伍拓自动化传动系统有限公司网站。公司技术团队为您免费提供编码器的选型、安装、调试、保养等技术指导服务,尽量避免企业因为编码器技术人员的短缺带来的损失,采取“电缆上+电缆下”服务的服务形式,帮助企业解决技术难题。